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SUMMARY 

An exact theory of unsteady convective diffusion in capillary chromatography 
is developed from first principles. Preliminary asymptotic results from the theory for 
large values of time provide rigorous justification for the Golay theory of capillary 
columns. The exchange coefficient, K,,, which arises from the analysis, is a new concept 
in capillary chromatography. K,, represents the result of the interaction between the 
diffusion of solute to the wall and its removal by the retentive layer at the wall. The 
theory presented here allows one to predict concentration distributions directly from 
first principles but the results can also be used to calculate the moments of the solute 
distribution and other quantities of interest in chromatography. 

. .~ _. ._____.._.. _ -- . ..-- . . . . --_ . _.._.....__. - __.-__...___ -__- _..__. --__--~-. 

INTRODUCTION 

The idea of using very narrow columns for chromatographic analyses was first 
mentioned by Martin’. However, it was Golay* who announced the rather startling 
advantages offered by an open-tubular chromatographic column coated on the inside 
with a retentive layer. Kaiser3, in his introduction, lists several advantages of this 
technique while Desty and co-workers - 4 9 have demonstrated its usefulness and 
versatility in numerous areas of application. Some recent improvements and applica- 
tions are contained in the works of Karoum and SandIerlO, Vestergaard and 
Jacobsonlr, Monr2, and Grob and Grobr3. 

The distribution of solute in a capillary column is governed by the complex 
interactions between the mechanisms of axial convection, radial diffusion and ex- 
change between the carrier fluid and the retentive layer. Theoretical analyses of solute 
behavior have been offered by Golay2*r4, KhanIs, and Giddings16. Golay adopted 
Taylor’s” intuitive procedure in analyzing the dispersion of a pulse of solute in a 
coated capillary. The difference between Golay’s and Taylor’s works lies in the fact 
that Taylor’s analysis applied to the case where there was no solute exchange between 
the flowing fluid and the capillary wall while Golay included this exchange, which is 
crucial to chromatographic separations. KhanIs and Giddings” make Taylor-type 
--- 

l Formerly known as R. Sankarasubramanian. 
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assumptions in analyzing systems more general than the ones considered by Golay. 
AriP extended the method of moments he had presented in an earlier work19 

to analyze capillary chromatographic columns among other systems. He arrived at 
Golay’s results in a more general form. Dayan and LevenspiePO analyzed the related 
problem of dispersion in pipes with adsorbing walls using Aris’ method of moments. 

Golay’&‘* theoretical results on capillary columns enjoy widespread accep- 
tance and usage in their design. However. his approach involves intuitive approxima- 
tions similar to those made by Taylor I’. Gill and Sankarasubramanianzl*** showed 
that there is no need to make the approximations due to Taylor. They further showed 
that Taylor’s” results are large-time asymptotes of a more general and exact theory of 
unsteady convective diffusion valid for all values of time which they developed from 
first principles. Sankarasubramanian and Gi1123 recently succeeded in extending this 
theory to interphase transfer problems. It is the purpose of this work to use their 
methodology in developing an exact theory of unsteady convective diffusion in capil- 
lary chromatographic systems valid, in principle, for all values of time and to show 
its relation to the asymptotic Golay theory. 

We shall restrict ourselves to the problem of solute distribution in a coated 
capillary in which the coating is very thin and therefore offers negligible resistance to 
mass transfer so that instantaneous solute equilibrium may be assumed to exist be- 
tween the retentive coating and the fluid adjacent to the wall. This is precisely the 
situation analyzed by Golay2*‘*. 

ANALYSIS 

Consider the dispersion of solute initially distributed in a straight circular 
capillary of radius R. Let the fluid in the capillary be in fully developed time- 
dependent parallel laminar flow described by the axial velocity u = u(t,r) where t is 
time and Y is the radial coordinate. Let the partition ratio for the particular solute and 
retentive coating under consideration be specified by k. Assuming angular symmetry 
and ignoring free convection effects, the local concentration of solute C, which is a 
function of time t, axial coordinate x and radial coordinate Y will satisfy the convective 
diffusion equation 

ac ac 
7 + u(t,r) ax 

D i a ac a*c -= __--_r+f ( r ar ar ax* 1 (1) 

along with the initial condition 

C(O,x,r) = Co v,(x) Ydr) (W 

where Co is a reference concentration. This initial condition is quite general and can 
account for the pulse or slug input encountered in chromatographic separations. 
Furthermore, it also allows for possible transverse non-uniformities in the initial con- 
dition which arise, for instance, when one injects a sample directly into a carrier fluid 
using a syringe. Following Golay’*, we may write the boundary condition at the wall 
as 
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-Dzg (t,x,R) = q z$ (t,x,R) (2b) 

Further, since the 

C(t,oo,r) = 

and by symmetry 

amount of solute in the system is finite 

E (I,ooJ) = 0 (2c) 

= 0 (2d) 

Defining the dimensionless quantities 

MJ) pe Rtio 
=-9 =- 

110 D 
and 8 = --$ 

0 

eqns. 1 and 2 may be rewritten as 

-g + U(t,y) ao = I a y ,$ 3 
8% 1 

ax Y ay Pe2 ax2 (3) 

N~,~,y) = VJW Y(Y) Wa) 

(4b) 

-g (t,X,O) = 0 WI 

where v(X) SE VI(X) and Y(y) = YI(r), u. is a reference velocity, and Co is a reference 
concentration. The solution of eqns. 3 and 4 is now formulated as 

0 (5) 

where the dimensionless average concentration 0, is defined as 

S&,X) = 2 j-l y0 dy (6) 
0 

Integration of eqn. 3 across the cross-section of the tube followed by the 
introduction of eqn. 5 results in the generalized dispersion equation 
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(7) 

where the coeficients KI are defined by 

1 

K,(t) = $- + 2 - 2 
s $I_ 1 (t,_v) L’(W) .V dy (i = 0, 1, 2, . . .) (8) 

r II 

Here f_, = 0 and dIJ is the Kronecker delta function defined by 

alJ= 1, i=jl 

b,, = o, i + j J (9) 

Eqn. 7 is the exact equation satisfied by the average concentration distribution 
in a capillary chromatographic system. It is derived from first principles and differs 
significantly from previous “models” for this quantity. Some of these differences are 
detailed below. 

(1) Golay*J derived a model for O., which involved a term a%,,/& aX and did 
not contain the term &(I,,, which arises naturally out of this analysis. The term 
K0 0, accounts for the diffusional transport of solute to the capillary wall and the 
exchange of solute with the wall. 

(2) The coefficients in the dispersion equation, K,, are time-dependent even if 
the velocity field is steady because of the time dependence of the functions& It can 
be seen that all the functionsf, approach asymptotic steady-state representations for 
large t when the velocity field U is steady. These will result in constant asymptotic 
values for the K,. In contrast, earlier models contained only constant coefficients, 
which restricts their validity automatically to large values of ‘c and steady flow. 

It was shown by Gill and Sankarasubramanian 21 that the infinite series in eqn. 7 
can be truncated after the term involving K2 without resulting in serious error. This 
was also verified by Sankarasubramanian and GillZ3 for situations involving interphase 
transport. The validity of the truncation for the present problem will be examined 
later in this work. After performing the truncation, the mean concentration, O,,, 
satisfies 

(10) 

The solution of eqn. 10 for 0, requires a knowledge of the coefficients &, KI 
and Kt in addition to initial and boundary conditions on O,,. From eqn. 8 it may be 
seen that this requires a determination of&, I; and fz. To achieve this, the solution, 
eqn. 5, is substituted in eqn. 3. Upon using eqn. 7 to evaluate aJ+18,/& a4YJ in terms 
of ai t3,,,/aXi and subsequently matching coefficients of al o,,,/aXl (i = 0, 1, 2, . . .), 
we arrive at the following set of partial differential equations for$, 

af; _ 1 a ah 
-7 ay 

- - 
at vy ay 

WTY> A - 1 + &r;-2 - &fJ-, (j= 0,1,2,...) 
I=0 (11) 
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Here 
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f-1 =$-_2 = 0 

The initial and 
from eqns. 4 and 5 as 

(12) 

boundary conditions on JJ(t,y) and O,,,(t,X) may be obtained 

M-AY) = Y(Y) 

2 ol’~ Y(y) dy 
6 Jo I 

t 
(j = 0, 1,2, . . .) (13) 

-- ; -g (t,l) = + C&l) + iko Mr)S,--,(r,l) 
I 

and 

0,(0,X) = 27iG’) 5’ Y Y(Y) dy 
0 

30 I,, On,(v=) = ax h-1 = 0 1 (14) 

Also, eqn. 6, when introduced into eqn. 5, requires that 

ollj;~ dy = f a,o (j=O, 1,2, . ..) (1% 

Coeflcien t K. 
The functionJO and the coefficient K. are independent of the velocity field and 

can be solved for immediately. These two quantities are intimately coupled, as may 
be observed from their defining equations. Hence, they have to be solved for 
simultaneously. Following the procedure developed by Sankarasubramanian and 
GilP for uncouplingf, and K. and using the methods of Lowanz4, for handling sys- 
tems with non-orthogonal characteristic functions, the solution of eqns. 11, 13 and 15 
forj = 0 may be written as 

A0 + E A, Jo (a,~) exp (--an2t) 
so(CY) = 

1 

Ao+2E+ 
(16) 

J,(G) exp (----a,+) 
1 

where 

I 

S Y Y(r) Jdw9 dv 
A, = 0 

,J,‘(aJ(l+k+*) J-Iv W) dy 

(n = 0, i, 2, . . .) 

0 

(17) 
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and the characteristic values cc, are solutions of the transcendental equation 

2Jda) + kdcda) = 0 (18) 

and hence are parametrically dependent on the partition ratio k. From eqn. 8 for 
i = 0, K,,(t) then may be written as 

2 2 A ncz,JI(a,) exp ( -a,%) 

K,(t) = - 1 

A(J + 2E$- 
(1% 

Jr(rr,) exp (-rz,%) 
1 

From eqn. 19 it is seen clearly that the new coefficient K,. which we shall refer to as 
the “exchange coefficient”, depends on the nature of the initial solute distribution 
Y(y) through the coefficients A,, which are defined by eqn. 17. As pointed out earlier, 
it is independent of the nature of the velocity distribution. 

As ‘G --f 00, eqns. 16 and 19 give the following asymptotes 

LimJb(r,u) =.fX-,Y) = 1 
T-bW 

Lim K,(t) = &(oo) = 0 
7-m 

Steady flow - asymptotic Kl 
While we were able to solve for the time-dependent coefficient 

entirety with relative ease, such is not the case with the higher-order 

(20) 

(21) 

K,(t) in its 
coefficients. 

The equations forj” and K, are coupled intimately and are quite complex so that the 
task of obtaining the complete time-dependent behavior of these quantities seems 
formidable. However, it is clear from the defining equations that fJ(z,y) and KJT) 
have non-trivial steady states for the case of steady flow. Since it is sufficient to obtain 
the asymptotic steady-state representations of the first few coefficients K1 for the case 
of steady flow in order to establish the relation of the present exact approach to 
Golay’s work, we shall proceed to do so. When the flow is steady 

u(t,r) = u(r) = uo (1 - -$) (2W 

Here u. is the centerline velocity which is chosen as the reference velocity in defining 
non-dimensional quantities earlier. From eqn. 22a and the definition of U 

U(y) = 1 - y2 (22b) 

The equations for the steady-state coefficients K, and the steady-state functions 
/j(y) can be obtained from eqns. 8 and 11-13 by simply dropping the time derivative. 
The resulting equations for f, and K, of the same order are still coupled. However, 
they can be uncoupled quite simply and the final solution forf,(y) may be written as 
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.1&q = B, + +- YZ 
Y’ cc 

+os -&s 77 [(I - V2%-*(~7) 

- -&fi-1(11) + 1;: K,_f,_ c(a)] drdE (_I’ = 1, 29 3, - + -) (23a) 

where 

J-1 

- (1 - $).f,-L(q) - C K,j;_ &I)] d?]d&dy (j = 1, 2, 3, - - (1 (23b) 
I=1 

and the steady-state KJ are given in terms of the functionsf, (i = 1, 2, . . . ,j - 1) by 

1 
Kj = ’ + k [ 

8 
p”E2 - 2oS’h-r Y (1 - v2) dy - k;+; WL, (‘1-j 

(j= 1,2, 3, .-*) (24) 

Starting with& = 1, KI may be calculated immediately from eqn. 24. This value of 
KI may then be used in eqns. 23 to obtain f,(y). This procedure may be repeated 
indefinitely to generate as many of the constants K, as required. Here we shall 
content ourselves with calculating just the first three coefficients. These are given by 

I 
Kl = - 2 (1 + k) 

K2= ’ 1 I + bk + I Ik2 - 
1 + k PC2 + 192(l + k)3 

(25a) 

(25b) 

K3== - L4(1 +,/03 Per 
k (I + 4/c) 1 + I + I Ok + 44k2 + 122k3 + 177k* 

23040 (I + /c)~ 1 (25~) 

The functionsf,(y) and_f2(y), which were obtained at intermediate stages in the above 
calculation, are tabulated in the appendix. 

Refatiorl to adsorption 011 the wall 
The present method of approach applies equally well to situations where the 

solute is adsorbed on the wall instead of being removed by a retentive layer. For 
such cases, if W(t,x) is defined as the surface concentration on the wall, the following 
condition describes the fact that the solute flux at the wall causes an accumulation in 
the adsorbed layer. 

3W _+ - (t&m = at 

Further, if a linear adsorption isotherm is assumed 

W(t,x) = k’ C(t,x,R) (27) 
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where k’ is the equilibrium constant for adsorption. Eliminating W from eqns. 26 and 
27 we get 

- D -$& (/,x,f’?) = fi’ + (f.-r,R) (28) 

and comparison of eqns. 2b and 28 reveals that they will be identical if the partition 
ratio k is replaced by 2k’/R. All the other equations will be the same and llence the 
present results also apply to the dispersion of an initial solute distribution in a tube 
with an adsorbing wall if k is replaced in terms of k’ as indicated above. 

Sofutiori for 0, 
The final step is to solve for the average concentration distribution, On,(t,X). 

Eqns. 10 and 14 can be solved quite easily once the nature of the initial distribution 
is specified. Here we shall consider a very common case that arises in chromatography 
with direct injection. Solute of mass M is introduced instantaneously at the plane 
.Y = 0 at time zero uniformly across a circle of radius aR concentric with the tube 
axis. In this case. we may take 

co= M 
z R3Pe (29) 

(30a) 

Y,(r)= 1, O<rcaR 
Y,(r) = 0, aR < r & R (Job) 

(In eqn. 30a, d(s) and B(X) are Dirac delta functions.) The solution of eqns. 10 and 
14 then may be written as 

O”,(~,W = 
1 

---exp 
22/xl$ ( 

i - 

where 

and 

(31) 

(32a) 

(32b) 

(32~) 

The procedure used for obtaining eqn. 16 for .fo(7,y) allows one to deduce the fol- 
lowing result 
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exP[S(z)]=A”+2~ A, 
1 

u, Jr(%) exp (--&) (33) 

For large t, the coefficient K,, approaches zero and this explains why this 
term was never present in previous dispersion model descriptions of the average con- 
centration, However, it can be clearly seen from the present exact approach that the 
entire time history of K,(t) is important. Eqn. 33 may be approximated for large ‘G by 

Since the coefficients K,(t) and K,(t) approach non-zero steady-state values KI and 
KZ given by eqns. 25a and 25b, the solution for 0,” for large ‘G may be approximated by 

o;“(o) = 
I 

2 (I + lc) l/(izK,t) exp ( _ (X + K,d’ 
4&t > (35) 

It sl~ould be clear, of course, that while the coefficients K, have non-trivial steady-state 
values, the concentration distribution itself is inherently unsteady and that the steady- 
state concentration distribution is the trivial solution O,,, G 0. Eqn. 35 is an asymptotic 
result valid for large t and does not represent a steady-state solution. It should be 
noted that this asymptotic solution is independent of non-uniformities in the initial 
distribution which have been attenuated by the process of convective diffusion. 

For completeness, the formal solution of the generalized dispersion eqn. 7 
along with eqns. 14 for the present system is.reported here. 

(36) 

In eqn. 36, i = d- 1 and C(t) and X,(t,X) are defined by eqns. 32a and 32b. 

Spatial niof~~e~~ts 
Golay’G4 results were presented in terms of spatial moments of the distribu- 

tion. For comparison, the dimensionless spatial moments of the solute distribution in 
this work may be defined as follows. 

P 
(I) = J-mO,,A’ dX 

-al 

ptJ> = Sm~,,r XI’ dX,_, (j = 2, 3,4, - - .) 
-al 

Wa) 

Wb) 

(37c) 

It may be noted that the second and higher-order moments are defined on the basis 
of the dimensionless moving coordinate system, A’,, defined in eqn. 32b, and hence are 
“central moments” of the distribution. Exact expressions for the moments may be 



262 R. SHANKAR SUBRAMANIAN 

obtained from the generalized dispersion eqn. 7 by multiplication of both sides by 
XJ or X,J as required and subsequent integration. Use of the initial condition, and the 
condition that the solute always is distributed in a finite region, leads to the following 
results for the first few moments. 

P (01 = exp[i’(t>l (38a) 

P fl) = -p”“oJTKl(~~) d.i/ (38b) 

For large t, eqns. 38 may be approximated by 

1 
P (0) * 

1 -!- Is 

(2) e 
2-c 

P (1 + kY [ 
1 

PC? 
+ 1 + 6/c + 1 l/P 

192(1 + k)2 I 

(39a) 

WC) 

It may be observed that the dimensionless zeroth moment of the solute distribution, 
which is a measure of the total amount of solute in the fluid, starts out at unity and 
decays monotonically to the asymptotic value given in eqn. 39a. Golay14, in his model, 
chose to normalize his distribution about the asymptotic zeroth moment. Hence. he 
obtained expressions for the higher moments in his work which. when expressed in 
dimensionless form, differ from eqn. 39 by a factor of (1 + k). Otherwise. the large- 
time asymptotes of the present exact theory are identical to Golay’s results thereby 
establishing the asymptotic nature of the Golay theory. The present results also differ 
from Aris’s by a factor of (1 + k) due to an entirely different reason. Aris included 
the solute in the retentive layer in his definition of the spatial moments and hence ob- 
tained a zeroth moment, which, initially normalized, never changed with time. It 
must be noted clearly that the moments reported in eqn. 39 correspond to the solute 
distribution in the flowing fluid. 

DISCUSSION 

In contrast to previous analyses of capillary chromatographic systems which 
employed intuitive approximations, the present procedure allows one to write exact 
solutions of the equation of convective diffusion. While this work is limited by the 
complexity of the system which has made it possible only to obtain asymptotic 
representations of the higher order fJ and K,, this is not a restriction on the method 
itself. The theory is capable of predicting system behavior for all values of time 
right from zero without recourse to arbitrary approximations. 

The exchange coefficient K0 arises naturally out of the analysis in describing 
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average concentration distributions in interphase transpoit problems (Sankarasubra- 
manian and GillZ3), and, to this author’s knowledge, is new in capillary chromatogra- 
phy. One may note that K,-, approaches the value zero asymptotically for large time 
for all values of the partition ratio k. Further, this asymptote is independent of the 
initial solute distribution. However. the short-lived K. leaves a permanent effect on 
the solution in the form of the term l/(1 + k) in the asymptotic solution, eqn. 35. 

It is interesting to observe the behavior of the new coefficient K,, as a function 
oft and Figs. l-3 depict this for different values of the partition ratio k and the di- 
mensionless pulse radius, “a". These data are calculated from eqn. 19. For the initial 
distribution given by eqn. 30b, the coefl?cients A, are obtained from eqn. I7 as 

A, - 8Jl(%a) 
aa,,J,Z(r~,,) (4 $- 4k + u,Zk2) 

(/I = 1.2,3, . ..) 

For large values of k. the following alternate expression is more useful: 

A,=--- 

aJf(%) (-$- + 

Wa) 

(40b) 

K,-, represents the combined effect of diffusion of solute to the wall and the ex- 
change of solute between the stationary and mobile phases at the wall. When a 
balance is achieved between the two as t becomes large, K,, approaches the value 
zero. K,, is mostly negative, because, during the period of its existence, solute is being 
removed from the system by the retentive layer at the wall and hence the term 
K. O,,, in eqn. 7 should be a sink term. Since K. does not depend on the velocity field 
for its existence, the simplest way to visualize it is to imagine a stationary system 
with an initial distribution similar to the one in the present problem but uniform 
axially. Such a system is defined in mathematical terms by the equations for fO. K,, is 
a linear multiple of the concentration gradient existing at the wall in that system. 

In Fig. 1, K,, is plotted as a function oft for /c = 0.5. a = 1 corresponds to a 
pulse initially uniform across the entire cross-section. The essentially infinite concen- 
tration gradient which initially exists at the tube wall is the cause of the large absolute 
values of K. for small t in this case. Continuous removal of solute by the retentive 
layer at the wall and resupply by diffusion result in the observed monotonic behavior 
of K,, for a = 1. When the initial pulse occupies the region r = 0 - 0.95R uniformly, 
the initial solute gradient at the wall is zero and K. starts at an initial value of zero. 
The figure shows its behavior from t = 10 -4 from which it can be inferred that, 
initially, relatively large amounts of solute are transferred to the wall region and to 
the retentive layer. This causes the retentive layer to transfer some solute back to the 
fluid which causes the positive values of K,, in the region 10q4 < t d 1.4 x 10e4. Re- 
supply of solute by diffusion makes K,, reach negative values again until, finally, the 
balance is found and K,, -+ 0. 

For smaller values of “a", Fig. 2 shows the behavior of K. as a function oft. 
The plots have been made on an expanded scale and the cases a = 0.95 and 1 are also 
included for comparison. It is evident from the figures that K,, undergoes adjustment 
as the balance between the bulk fluid diffusion and the wall processes is being achieved. 
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DIMENSIONLESS TIME. I 

k * 0.5 

-40 / I 
tI.l.0 I --~----I--- 

/ I 

-““l-7+-t------ 1 
-so / --i----------F-l 

1 1 
Fig. 1. Plots of the dimensionless exchange coefficient, &. against dimensionless time. ‘c, from eqn. 
19 for a = 1 .O and 0.95: k =i 0.5. 

One may note that for similar values of “a”, the solute undergoes dilution by the 
time it reaches the wall and hence wall concentrations and concentration gradients 
are smaller, resulting in smaller values of KO. 

In all the above cases, it may be observed that K. -> 0 fort - 0.4 to 0.6. The 
smaller the value of “Q”. the larger is the time taken for the asymptote to be reached. 

Fig. 3 shows the behavior of K,,(r) for larger values of k. viz., k = 50 and 500. 
It is seen from the figure that for up to r = 0.1, the behavior of K0 changes very little, 

ka0.5 

Fig. 2. Plots of the dimensionless exchange coefficient, Ko, against dimensionless time, t, from eqn. 
19 for a = 1.0, 0.95, 0.9 and 0.5; k = 0.5. 
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DIMENSIONLESS TIME, T 
IO" I o-2 IO" I 

Fig. 3. Plots of the dimensionless exchange coefficient, Ko. against dimensionless time, t. From eqn. 
19 for Q = 1.0, 0.95. 0.9 and 0.5; k = 50 and 500. 

indicating that its dependence on z has reached an asymptotic form for large k. How- 
ever, there is a significant difference between the two sets of results in the region t = 
0.1-2. It may be observed from the figure that there is a region oft here over which 
K,, is substantially constant after which it decays to zero. This curious phenomenon 
may be explained from an examination of eqn. 19, which reveals that, normally for 
sufficiently large t, KO may be written approximately as 

(41) 

However, for large k, A,, can be very small so that there is a region oft over which 
the first term in the denominator of eqn. 41 is negligible compared to the second and 

K,(z) - - (1: (42) 

of course, as t becomes larger, the term involving A,, becomes quite important and 
K,(t) ultimately decays to zero. From eqn. 34 for A,,, it is also clear that as k increases, 
this region over which K,, is constant extends for larger values oft and K0 decays to 
zero much later as is verified by Fig. 3. 

It should be pointed out at this stage that for typical gas-phase chromato- 
graphic systems, the real time taken for K0 to approach zero would be in the order 
of a few seconds at the most because of the relatively large values of gas-phase dif- 
fusivities. However, in a liquid-phase separation, this time can be as high as half an 
hour since the diffusivities are smaller. by three orders of magnitude. 

The dimensionless zeroth-order’moment of the solute distribution. ,u(O), is the 
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ratio of the total amount of solute present in the flowing fluid at any time to the total 
amount of solute originally introduced into the system. Initially, ,M~O) is equal to unity. 
As solute is transferred into the retentive layer at the wall, 1~‘~’ decreases and 
ultimately approaches a steady asymptotic value of l/(1 -i- lc) for large t as K. -+ 0. 
This signifies the attainment of overall equilibrium between the solute present in the 
flow and that in the retentive layer. Figs. l-3 show that the time required for this 
asymptote to be reached for practical purposes increases for increasing k. Of course, 
even though overall equilibrium has been achieved. locally, near the tail end of the 
distribution, solute will be continually transferred from the retentive layer to the bulk 
fluid because of relatively lower solute concentrations in the flow. Near the front, the 
opposite will be true. 

k= 0.5 

OIMENS/8NLESS TIME, 7 

Fig. 4. Plots of the dimcnsionlcss zeroth momcnt,~~‘O). against dimcnsionlcss time, t, for a = I .O, 0.9 
and 0.5:-k = 0.5. 

$O), which is defined by eqns. 38a and 37a, may be calculated from eqn. 33. 
This expression may be recognized as the denominator in eqn. 19 for K. and hence is 
obtained during the process of computing Ko. Figs. 4 and 5 are plots of ,uuto) against 
dimensionless time, t. In Fig. 4, $O’ is plotted for k = 0.5 over a range of values of 
the dimensionless pulse radius, “Q”. It is seen that for smaller values of “a”, the solute 
takes time to diffuse to the wall and get transferred to the retentive layer. Hence ,u’O’ 
remains close to unity for longer periods of time since the start of the process for 
smaller values of “a”. Ultimately, independent of the nature of the initial distribution, 
overall equilibrium is reached by t * 0.6. Fig. 5 shows the behavior of$O’ for larger 
values of k and it may be observed that up to r * 0. I, $O) shows no change with in- 
creasing k indicating that k = 50 is large enough for p (“) to exhibit asymptotic behav- 
ior for large k. For t > 0.1, different k values result in differences in the plots due 
to the differences in the lengths of the constant K. regions discussed earlier. Also. the 
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- kn50 

Fig. 5. Plots of the dimensionless teroth moment.p’“) 
and 0.5; k = 50 and 500. 

, against dimensionless timc,r,for u - 1.0, 0.9 

figures show that the large-time asymptotes are reached for larger values of t as k 
increases and that the asymptotic values themselves are smaller for larger k. 

Table I shows values of K,, Kz and K3 calculated using eqns. 25 for various 
values of the partition ratio, k. The Peclet number is left in as a parameter. It may be 
observed from the equations that as k ---f 0, KI, IV2 and KS approach the following 
limiting values in agreement with the results of Gill and Sankarasubramaniar? for 
the case of no interphase transport. 

I 
Kl -> - - 

2 (43a) 

K2 -+‘+A Pe2 
1 

K--Bizi8 

(43b) 

(43c) 

TABLE I 

ASYMPTOTIC COEFFICIENTS K,. Kr AND KJ FOR VARIOUS VALUES OF k 

IC Kl KZ KJ 

0 -0.5 -& + (5.208 x 1O-3) - 4.340 x 10-s 

0.5 -3.333 
x --2 

x to-' 6.667 IO-’ pc2 -+- (1.042 x 1O-2) - !+~zk+z lo - (2.476 x lo-.‘) 

5 -8.333 x 10-L 1.667 -. x IO-’ ---.-. 
kii- + 

(7.378 x 10-j) - 2.p x 10-Z ..-.-._ .__ _ 
PcZ 

(7.090 x 10-y 

50 
-99.804 x lo+ f.961 x 1O-2 3.157 x IO-3 -.--.----- -.-- 

PC2 
+ (1.092 x 10-q - ‘- ..lj;;i_----- - (1.411 x 10-4) 

500 -9.980 1O-4 1.996 x x 1O-3 -- 
Per 

+ (1.140 x 1o-d) - 3.315 - _.-..--.-_-_._ x 1O-4 

PI? 
- (1.523 x lo->) 
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In the limit as k + 00. it can be shown that all the coefficients KI (i = 0, 1. 2, . , .) 
and the functions/‘,(y) (j = 1, 2, 3. . . .) approach zero. 

Examination of Table 1 reveals that for large values of time, the truncation of 
the dispersion equation at the term involving K2 is quite justified for small values of 
the partition ratio, k. For large k. such truncation may not be very safe and the actual 
importance of including the term involving KS can only be assessed by comparing exact 
solutions of the dispersion equation with and without the additional term. 

The height equivalertt to n tlreorerical plate (HETP) 
The HETP is a widely used quantity in chromatography. This is related to the 

asymptotic coefficients K, and K2 as follows. 

H = 2 Pe K2 R 

(--K,) 

CONCLUSIONS 

An exact procedure, valid for all values of time, is formulated for analyzing con- 
vective diffusion in capillary chromatographic systems. Preliminary asymptotic results 
derived from the theory for large values of time provide rigorous justification for the 
classical results due to GolayrJ. 

The exchange coefficient, K,,, is a new quantity in the dispersion equation for a 
capillary chromatographic column. The behavior of this coefficient is examined in 
detail. It is also shown in this work that the higher-order terms in the dispersion 
equation may become important for large values of the partition ratio, k. 

The methods developed here can be used to calculate quantities of interest in 
chromatography such as the height of a theoretical plate and the moments of the 
solute distribution. 
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NOMENCLATURE 

A” = Expansion coefficients defined by eqn. 17 
a = Dimensionless radius of the pulse, 0 d a < 1 

BJ = Coefficients defined in eqn. 23b 
C = Concentration of solute, g/cm3 

C, = Area-average concentration, g/cm3; C,,, = oJR CrdrIOJndr 

CCI = Reference concentration. g/cm3 
D = Molecular diffusivity, cm*/sec 

h = Dimensionless functions defined by eqns. 1 I-1 3 and 15 
H = Height equivalent to a theoretical plate, cm 

Jo = Bessel function of the first kind of order 0 

Jl = Bessel function of the first kind of order 1 

fG = Dimensionless coefficients in the generalized dispersion equation defined in 
eqn. 8 
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k = Partition ratio (dimensionless) 
lc’ = Equilibrium constant for adsorption, cm 
M = Total amount of solute in the initial distribution, g 
Pe = Peclet number, Rue/D 
R = Tube radius, cm 
r = Radial coordinate, cm 
I = Time, set 
u = Dimensionless axial velocity, u/u, 
u = Axial velocity, cm/set 
uo = Reference velocity, cm/set 
W = Concentration in the adsorbed layer on the inner surface of the conduit, g/cm2 
x = Dimensionless axial coordinate, Dx/R2uo 

XI = Dimensionless translating axial coordinate defined in eqn. 32b 
x = Axial coordinate, cm 
Y(Y) = Radial dependent part of the initial distribution 
Y,(r) = Y(Y) 
Y = Dimensionless radial coordinate, r/R 
a, = Eigenvalues defined by eqn. 18 
P = Fourier variable 
6 = Dimensionless function defined by eqn. 32a 

; 
= Dummy variable of integration 
= Dimensionless concentration, C/Co 

0 ,,I = Dimensionless average concentration, C,,,/C, 
cc (J) = Dimensionless moments of the solute distribution defined in eqns. 37 
6 = Dimensionless function defined by eqn. 32c 

;(X) 

= Dimensionless time, D/R2 
= Axial dependent part of the initial distribution 

?/Jl(X) = y,(X) 

APPENDIX 

The steady-state functions s,(y) and f2(y) are given below. 

j;(Y) 2 i- 5/c = - 
48 (1 + k) 

+ m+TY’ 1 + 2k -- 16y4 1 
(A.1) 

h(Y) = - 
k 

( 
1 -_ 

WV 

2 
4(l-+k)Pe* 2 ) 

_t 31 + 173k + 313/F+ 351/v 
- 46080 (1 + k)j 

3 + 16k + 27k2 + 20/c’ 
.vz + 

5 + 19k + 17k2 
- 

768 (I + k)3 768(l +/I)* ” - 
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